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Abstract-we present a new type of method for the integration of systems of linear inhomoge- 
neous initial value problems with constant coefficients. Our methods are of hybrid explicit Numerov 
type. The methods are constructed without the intermediate use of high accuracy interpolatory 
nodes, since only the Taylor expansion at the internal points is needed. Then we derive the order 
conditions taking advantage of the special structure of the problem considered. We present a method 
with algebraic order seven at a cost of only four stages per step. Numerical results over some linear 
problems, especially arising from the semidiscretization of the wave equation, indicate the superiority 
of the new method. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The initial value problem of second order 

2 = LY + g(t), Y (to) = YO? Y’ (to) = Y& 

where L E !Pxn and g : 92 --+ 32” usually arises when, for example, the method of lines is applied 
to linear wave equations. 

This problem is a special case of the general class of second-order initial value problems 

Y” = f(4 YL Y (to) = Yo, Y' (to) = 516, 

where f : !J? x !R2” -+ R”. 
When solving (2) numerically, we have to pay attention to the algebraic order of the method 

used. This is the main factor in achieving higher accuracy with lower computational cost; i.e., 
this is the main factor of increasing the efficiency of our effort. Various types of methods for the 
numerical approximation of the solution of (2) are considered in [l]. One of the most widely used 
methods for solving (2) is the Numerov method which has algebraic order four. This method is 
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implicit, which means that its implementation involves computations of Jacobians for the solution 
of nonlinear systems of equations [2]. Many authors proposed explicit modifications of the Nu- 
merov method. The highest algebraic order achieved was six [3-51. Recently, Tsitouras presented 
an explicit method of algebraic order eight suitable for problems with oscillating solutions [6]. 

These methods require the evaluation at interpolatory off-step nodes. This technique increases 
the computational cost since the values at the interpolation points share high accuracy of the 
solution, something that is useless. So, six stages are needed per step for a sixth-order method, 
while an eighth-order method uses at least ten stages per step. 

The purposeless derivation of accurate solutions at intermediate points was our motivation 
for considering another approach, similar to the one used for the construction of Runge-Kutta- 
NystrGm (RKN) methods [7]. Instead of spending much effort increasing the order of internal 
nodes, we simply involve them in a scheme, where only the final result has to achieve the demanded 
order. So we managed to derive a sixth-order method at a cost of four stages instead of the six 
stages needed according to the classical implementation [4]. Here we intend to make use of the 
special structure of problem (1) and increase the order of the resulting methods. 

There have been several attempts to develop efficient methods for integrating linear systems 
of first-order ODES [8,9]. Recently, Zingg and Chisholm [lo] presented Runge-Kutta methods of 
orders four, five, and six for first-order linear initial value problems. It is natural to extend that 
work for NystrSm methods. Unfortunately, this is not as effective as it seems it might be at first. 
Classical Nystrom methods share coefficients satisfying two sets of order conditions [l, p. 2671. 
One set comes when matching Taylor series expansion from the propagation of y, and the other 
set from the propagation of y’. When using a not so restrictive assumption [l, p. 2681, we finally 
solve only one of the sets of equations. This technique cannot be applied to the reduced set of 
order conditions for linear problems. The assumption mentioned before is valid along with some 
of the conditions that do not belong to the reduced set then. 

2. THE NEW METHOD 

Following the implementation of [4], let h > 0 and t, = to + nh, n = 0, 1,2,. . . . We may 
construct a sixth-order method for the approximation of yn+i using values from two steps, i.e., 
[tn_i,tn] and [tn,tn+i]. The available values are gln-ir yi._i = fn_i, and yn while we get a fourth 
result using y: = fn = f(tn, yn) at a cost of one function evaluation. 

We also need four more values of second derivatives within the interval [&-I, t,+l] with accu- 
racy 0(h6). Then we are able to form the required interpolant of order O(h8). It is desirable 
to derive them without cost, and construct a sixth-order method at a cost of five stages. This 
cannot be achieved since the values yn_rr yi_i, ynln, and yx are not enough information to give 
us interpolatory approximations of the accuracy needed. So the total cost increases to at least 
six stages. 

Interpolatory nodes carry a lot of information that is useless even for conventional methods [7]. 
Implementing the new method, we only need yi and three extra function evaluations fa, fb, 
and fc. The new method has the form 

fn = f (tn, Yn) 7 

~a = CIY~-I + (1 - cl) yn + h2 (dllfn-1 + dnfn) , 
fa = f (tn - clh, ~a), 
Yb = C2Yn-1 + (1 - c2) Yn + h2 (dzlfn-1 + d22fn + gnlfa) , 

fb=f(tn-czhyb), 

Yc = C3Yn-1 + (1 - C3) Yn + h2 (d31 fn-1 + d32 fn + 931 fa + g32 fb) , 

fc = f (tn - &,Y,) , 

Yn+l = -Yn-1 + 2yn + h2 (Wfn-1 + w2fn + bl fa + b2 fb + b3 fc) . 
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Using the notation of Nystrijm methods, we consider the following matrices: 

-0 0 0 0 o- 
0 0 0 00 

A = dll d12 0 0 0 , 

61 42 921 0 0 
-41 42 931 932 O_ 

b= [wl ~2 bl b2 b3 ] , and 

c=[l 0 Cl c2 C31T. 

Now the method can be formulated in a table like the following Butcher tableau [11,12].: 

c A 

+ b ’ 

Then we consider the Taylor series expansions of fa, J$, fC, yn+i, and y(tn + h). For a seventh- 
order method, we match the corresponding expansions up to ha, and we arrive at an expression 
of the form [13] 

h2 (9z,lF2,1) + h3 (q3,lF3,1) + . . . + h8 (q8,1F8,1 + . . . + ‘?8,21&,21) + 0 (h”) > (3) 

where qij are expressions of the coefficients of the method while Fij are elementary differentials 

with respect to y’, f, f’ = $$ and f ck) = 3, k = 2, . . . ,6. The order conditions for a seventh- 
order method are in total 44. The enumeration of order conditions follows from the theory of 
Nystrijm methods [1,13]. 

If we had to solve a scalar ODE of the type (2), then some of the elementary differentials 
appearing in (3) may coincide. For example, f”fc3)y’ 4 = fc3)f”y’ 4 for scalar equations. This 
is not true for systems of ODES since fc3), f”, y’ are ma trices or even tensors. We cannot take 
advantage of such a coincidence when dealing with scalar inhomogeneous linear equations, as all 
the differentials that might reduce, vanish. Our gain is that we may proceed with our calculations 
based on this simplified problem. 

Observing the series of the form (3) coming from scalar linear problems, we found that only a 
subset of the 44 order conditions needs to be solved. Further reduction of the order conditions is 
achieved using the simplifying assumption 

with e = [ 1 1 1 1 llT and ci = [l 0 ci ci ci]. Equation (4) reduces all qs with 
corresponding elementary differentials containing f. For example, q42 = bAe + bc - l/12 with 
F4s = f’f is simplified by q41 = (1/2)bc2 - l/12 with F4i = f”y’ 2, since q42 = bAe + bc- l/l2 = 
b(l/2)(c2 -c) - bc- l/12 = (l/2)bc2 - 2bc- l/12 = (l/2)bc2 - l/12 = q41. (Notice that q31 = bc 
ought to be zero satisfying a lower order condition.) Finally, we may find the remaining order 
conditions for the case we study here in Table 1. 

After assumption (4), only 14 coefficients remain free to satisfy the 13 order conditions q21 = 
q31 = . . . = q83 = 0. We solved these equations using optimization toolbox of Matlab [14], requir- 
ing 12-13 digits of accuracy. Then we refined the various solutions we got using standard routines 
of Mathematics [15], at 17-18 digits of accuracy. A specific choice with minimal truncation error 
is given in Table 2. 

The truncation error of the new method is 

LTE = hg 
1.34. 10-4f’3y’ + 8.42. 10-6af’2f”‘y’3 

f1.89. 10-6f’f(5) y’s + 3.95 . 10-7f@)y’6 > 
-f 0 (P) 
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Table 1. The equations of condition for inhomogeneous linear systems with constant 
coefficients. 

921 =b.e-1 

931 =b.c 

qJ1 = )I. c2 - L 
12 

qsl = ;b.c3 

qs2 = b.A.c+ fbx 

q61 = Ab.c4 - & 

1 1 
qs~=2b~A~c2+zb~c-~ 

qT1 = &b.c5 

qT2=;b.A.c3fIb.c 
120 

q~3=~b.A2.c~~b.A.C+~b.c 

1 1 
981 = =b. c6 - - 

20160 

qs2= &.A.c4+&.- 1 
720 20160 

1 1 1 1 
q83=2b.A2x2+zb.Ax+720b.c-- 

20160 

Table 2. The coefficients of the new method accurate at 16 digits. 

dll = 0.9849042853884411 

dzl = -1.00615149302248 

g2r = 0.01229272944938354 

d32 = -0.3189442671225579 

932 = 0.2550050264031409 

c2 = 0.5426601390083943 

wr = 0.01207322890110905 

bl = 0.2202109686806263 

b3 = 0.04326778605351844 

dl2 = -0.6191851078585296 

dss = 0.8697687073032044 

dB1 = 0.6331480169843698 

g3r = 0.1929702170578158 

c1 = -0.4906757063034415 

cs = -0.8320502943378441 

~2 = 0.4812388540806565 

b2 = 0.2432091622840896 

All the other elementary differentials of the principal error are zero. The size of the coefficients 
in the O(hlO) term are small enough and do not affect seriously the value of LTE. 

The new method is implemented in constant step-size mode. After the evaluation of fn+r, we 
may use it as an extra fifth stage in an FSAL (first same as last) [16, p. 171 scheme with 

I?= [l 0 Cl cs cs - l], and osr = wr, C&j2 = ws, a63 = bl, a64 = bz, a65 = b3. The new 
weights can be found satisfying the order conditions up to fourth order 6 . e = 1, b . 2 = 0, 
6. e2 = l/6, 6. E3 = 0, h e A. c = 0. Following [17], we may deduce an error estimate without cost 
which produces errors proportional to a requested tolerance when advancing the solution with 
the higher-order method 
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Then we may proceed to step adjustment according to the lines introduced in [18]. Actually, 
Raptis and Cash [18] have restricted all step changes to doubling and halving since they had a 
high-order midpoint approximation of the solution. An interpolatory technique is more appropri- 
ate here. We hope to be able to introduce such a general approach for hybrid Numerov methods 
in the future. 

3. NUMERICAL RESULTS 

To illustrate our new seventh-order method, we compare it with the following sixth-order 
methods: 

1. the six-stage two-step method of Chawla and Rao [4], 
2. our four-stage method appearing in [7], and 
3. the effectively five-stage Runge-Kutta-Nystrom pair of orders 6(4) found in [19]. 

First we solved the linear problem 

with theoretical solution 

I, 1 1 
Y1 = i&/l - -Y2, 10 

1 
Y; = -lo”1 + &y2 -t sin t, 

y1(x) = cos At - _EE 
10101 

sin t, y2(2) = cos $t - E sin t, 

for t E [O, 10~1. 
Then we consider the linearized wave equation [20] 

29221 ti2u . 
2922 =4G+smt.cos ( If-5 

b > , 0 5 x 5 b = 100, t E [0,40~], 

z(t, 0) = g (t, b) = 0, 

with theoretical solution 

.@,z)=&. sint.cosE. 
, b 

Discretization of ti2u/tix2 by fourth-order symmetric differences at internal points and one- 
sided differences of the same order at the boundaries yields the system 

=& 

415 
-- 

72 
8 -3 

8 1 
9 -s 

257 10 7 2 1 
144 -- 3 Z -9 48 0 

14 54 1 
-- 12 3 -z 3 

-- 
12 

. . . . . . . . ., 

1 4 5 4 1 

-z 5 -5 3 -- 12 

0 1 2 7 10 257 
48 -9 4 

-- 
3 144 

1 8 -- 
8 

9 -3 8 -&!$ 
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cos(q%) 

+sint. ! : COh(q%) . I 
[co6(q.*) J 

By choosing Ax = 5, we arrive at a constant coefficients linear system with N = 20. 
The two-step methods were run with constant step size, and the observed endpoint error e was 

recorded at a fixed number of stages. Then we computed in Tables 3 and 4 the value - loge, i.e., 
the number of accurate digits of the solution. The sixth-order RKN method given in [19] was 
used to propagate the first step. 

The Runge-Kutta-Nystrom pair was run for tolerances 10e3, 10e4, . . . , lo-’ using variable step 
mode, according to the guidelines and step-size control algorithm introduced in [17]. This affects 
favorably its efficiency [22, p. 3341, but we decided to test the methods the way most codes 
implement them. For reasons of comparison, we estimated the number of accurate digits that 
might be generated at the same number of stages used by two-step methods. This estimation 
was done by linear interpolation on decimal digits of accuracy achieved for each tolerance. 

Table 3. Accurate digits for the linear system. 

Two-step [4] 

Two-step [7] 

RKN (191 

NEW 

Stages 

240 360 480 600 720 840 960 1080 1200 1320 

Table 4. Accurate digits for wave equation. 

Two-step [4] < 0 2.0 2.7 3.4 3.9 4.4 4.8 5.1 5.4 5.7 

Two-step [7] <o 2.7 3.7 4.4 4.9 5.4 5.7 5.9 6.2 6.3 

RKN [19] <o 2.5 3.9 4.3 4.5 4.6 4.6 5.8 6.3 6.3 

NEW <o 3.8 5.2 6.0 6.2 6.3 6.3 6.3 6.3 6.3 

Stages 

, 360 720 1080 1440 1800 2160 2520 2880 3240 3600 

The results show that the new method has a much better performance than the other methods 
for the problems considered. Obviously, this is due to its special characteristics. For example, 
in the linear system, 7.8 digits of accuracy were achieved by the RKN pair at a cost of 80% 
more function evaluations. In the wave equation, the fixed spatial discretization error limits the 
accuracy to 10-6.3. The RKN pair needs almost 60-70% more function evaluations to reach this 
accuracy. In [21], an RKN pair of orders 6(4) was given, but it was especially constructed for 
oscillatory problems. Here it showed results improving the RKN performance in Tables 3 and 4 
by IO-15%, still far in efficiency from our new method. 

4. CONCLUSION 

A new approach for the derivation of two-step hybrid methods for inhomogeneous linear prob- 
lems with constant coefficients was presented. We derived the equations of condition for this type 
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of problem considering, without loss of generality, a scalar problem. Then a new seventh-order 
method was constructed at the smallest possible cost. The numerical performance of the new 
method is very promising, especially when applied to semidiscretization of linear wave equation. 
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